標題:
Higher level maths
發問:
x,y,z are 3 real number such that x+y=6 and xy=z^2+9, find the value of x-y.
最佳解答:
By AM >= GM, (x+y)/2 >= sqrt(xy) 6/2 >= sqrt(xy) 3 >= sqrt(xy) xy <= 9 z2 + 9 <= 9 z2 <= 0 z = 0 (because z is real) Therefore, x + y = 6 and xy = 9 (x + y)2 = 36 x2 + 2xy + y2 = 36 x2 - 2xy + y2 = 36 - 4xy x2 - 2xy + y2 = 36 - 36 x2 - 2xy + y2 = 0 (x - y)2 = 0 x - y = 0 2013-11-06 16:53:09 補充: 不雅之虎,但沒有 z 怎計?
你只問x-y,那麽z 可以不理,沒有z你應該懂得計。
Higher level maths
發問:
x,y,z are 3 real number such that x+y=6 and xy=z^2+9, find the value of x-y.
最佳解答:
By AM >= GM, (x+y)/2 >= sqrt(xy) 6/2 >= sqrt(xy) 3 >= sqrt(xy) xy <= 9 z2 + 9 <= 9 z2 <= 0 z = 0 (because z is real) Therefore, x + y = 6 and xy = 9 (x + y)2 = 36 x2 + 2xy + y2 = 36 x2 - 2xy + y2 = 36 - 4xy x2 - 2xy + y2 = 36 - 36 x2 - 2xy + y2 = 0 (x - y)2 = 0 x - y = 0 2013-11-06 16:53:09 補充: 不雅之虎,但沒有 z 怎計?
此文章來自奇摩知識+如有不便請留言告知
其他解答:你只問x-y,那麽z 可以不理,沒有z你應該懂得計。
文章標籤
全站熱搜
留言列表