標題:

Geometry : Circle

發問:

A and B are 2 circles with different radius that intersects at 2 point X and Y. PQ is a common tangent of the 2 circles that touches the circles at P and Q respectively. Chord XY produces and cut the common tangent PQ at point M, prove that PM = MQ. [ Prove by co - ordinate geometry not acceptable.]

最佳解答:

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

圖片參考:http://imgcld.yimg.com/8/n/HA04628698/o/701110210062313873483000.jpg ㄥPXY = ㄥYPM (∠in alt. segment) ㄥXMP = ㄥPMY (common) ∴ △XMP ~ △PMY (A.A.) Therefore MP : MY = MX : MP MP2 = MY * MX Similarly , MQ2 = MY * MX Hence MP2 = MQ2 MP = MQ Q.E.D.

其他解答:
arrow
arrow
    創作者介紹
    創作者 ppi93gk88d 的頭像
    ppi93gk88d

    ppi93gk88d的部落格

    ppi93gk88d 發表在 痞客邦 留言(0) 人氣()