標題:

已知一等差數列2,10,18,.......的第n項是130。求..

發問:

aa.jpg

 

此文章來自奇摩知識+如有不便請留言告知

已知一等差數列2,10,18,.......的第n項是130。求 a) n的值 b) 該數列首2n項之和

最佳解答:

T(1) = a = 2, d = 18 -10 = 10 -2 = 8 (a) T(n) = a + (n - 1)d 2 + 8(n - 1) = 130 8(n - 1) = 128 8n - 8 = 128 8n = 136 n = 17 (b) 2n = 17 * 2 = 34 S (n) = n / 2 [ 2a + (n - 1)d ] S (34) = 34 / 2 [ 2 ( 2 ) + 8 ( 34 -1 )] = 17 [ 4 + 264] = 4556

其他解答:

n=17 b)4556|||||a) f(n) = 8n-6 = 130 8n = 136 n = 17 b) f(34) = 8(34)-6 = 266 首2n項之和 = 2+10+18+......+266 = 2x34 + 8x561 = 4556 2006-10-15 11:32:51 補充: 唔記得項數之和的公式, 現在以心算代替, 你自己查番條式喇 2006-10-15 11:35:13 補充: 樓上應為 T(n)=a (n-1)d|||||設a為首項,d為兩數的差 a. 等差數列式:T(n)=a+(n+1)d 即:130=2+(n+1)8 130=2+8n+8 120=8n n=15 b. 2n=30 T(2n)=2+(30+1)8 T(2n)=250
arrow
arrow
    創作者介紹
    創作者 ppi93gk88d 的頭像
    ppi93gk88d

    ppi93gk88d的部落格

    ppi93gk88d 發表在 痞客邦 留言(0) 人氣()